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Abstract

In this paper, we consider the problem of scheduling jobs in a flowshop with two batch processing machines such that the
makespan is minimized. Batch processing machines are frequently encountered in many industrial environments such as heat
treatment operations in a steel foundry and chemical processes performed in tanks or kilns. Improved Mixed Integer Linear
Programming (MILP) models are presented for the flowshop problem with unlimited or zero intermediate storage. An MILP-
based heuristic is also developed for the problem. Computational experiments show that the new MILP models can significantly
improve the original ones. Also, the heuristic can obtain the optimal solutions for all the test problem instances.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we consider the problem of scheduling batch processing machines in a two-machine flowshop. A
batch processing machine is one that can process several jobs simultaneously as long as the total size of the batch of
jobs does not exceed the machine capacity. Batch processing machines are frequently encountered in many industrial
environments such as heat treatment operations in a steel foundry and chemical processes performed in tanks or
kilns [4]. Other applications of batch processing machines can be found in Uzsoy [8] and Damodaran and Srihari [2].
Uzsoy [8] describes an application for burn-in operations in semiconductor manufacturing. Damodaran and Srihari [2]
provides an application of batch processing machines used in chambers for environmental stress screening in a printed
circuit board assembly environment.

The addressed problem can be defined as follows. There is a set of n jobs ( j ∈ J ) to be grouped into batches
(b ∈ B). The batches of jobs are then to be processed on two machines (m ∈ M) in a flowshop. Each job j
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has a processing time p jm and a size s j on machine m. All jobs in a batch begin processing at the same time,
and the processing time of a batch Pbm is determined by the longest processing time of all the jobs in the batch,
i.e., Pbm = max j∈b{p jm}. Each machine m can process a batch of jobs simultaneously as long as the total size of the
batch does not exceed the machine capacity Sm . The criterion to be minimized is the makespan, or the completion
time of the last batch on machine 2.

The assumptions made for the problem are summarized as follows. All jobs are available for processing at time
zero, and both machines are continuously available during the planning horizon. At any time each batch of jobs can
be processed by at most one machine. The processing times of jobs are known and fixed, which include the required
sequence-independent setup times. Preemption of batches or jobs is not allowed, i.e., once a batch is started on a
machine it will continue in processing until the whole batch is completed. Two models are considered in this paper.
The first model assumes that jobs are allowed to wait between successive machines and the intermediate storage is
unlimited. The second model assumes that there are no intermediate storages.

The addressed problem is a permutation flowshop problem because there are optimal schedules for minimizing
makespan in a two-machine flowshop that do not require sequence changes between machines [5]. Nevertheless, the
problem is still NP-hard because the single machine version of this problem is NP-hard [8].

In the remaining of this section, we briefly review the related research on batch processing machines (or simply
batching machines). There is an extensive literature on research that involves both batching and scheduling decisions.
This line of research can be classified into two major models: family scheduling model and batching machine
model [6]. In a family scheduling model, jobs are grouped into families so that no setup is required for a job if it
belongs to the same family of the previously processed job. In a batching machine model, the batching machine is
capable of processing several jobs simultaneously. For the single batching machine, Uzsoy [8] proposes a number
of heuristics to minimize the makespan and the total completion time. Also, Brucker et al. [1] propose dynamic
programming algorithms to optimize several different criteria both for unrestricted batch sizes, and for batches that
can contain at most n jobs. The dynamic programming algorithms are further extended to identical parallel batching
machines for unrestricted batch sizes. For the case of flow shop comprising of batching machines, Danneberg et al. [3]
propose constructive algorithms to minimize the makespan under the assumption that the batches to be processed are
given as an input. Sung and Kim [7] analyze a two-machine flow shop comprising of batching machines with respect
to three due date related problems. The batching machines can process jobs simultaneously as long as the number of
jobs in the batch is less than a predetermined number. Moreover, Damodaran and Srihari [2] propose mixed integer
linear programming (MILP) models to minimize makespan in a two-machine flow shop with batching machines when
the buffer capacities are unlimited or zero.

In this paper, we consider the same problem as Damodaran and Srihari [2]. We will propose improved MILP
models for the problem. A heuristic procedure based on MILP will also be developed to derive near-optimal solutions
in much less computation time.

Definition of the problem sets, parameters, and variables is as follows:

Sets

J jobs
M machines
B batches
K positions
Parameters

p jm processing time of job j on machine m
s j size of job j
Sm capacity of machine m
Smin the smallest capacity of m machines, i.e., Smin = min{Sm |m = 1, 2}

#B number of batches
Decision variables

X jb 1, if job j is in batch b; 0 otherwise
Zbk 1, if batch b is scheduled in the kth position; 0 otherwise
Dependent variables

Cmax makespan
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Pbm processing time of batch b on machine m
Ckm completion time of the kth batch on machine m
Dkm departure time of the kth batch on machine m
Qkm processing time of the kth batch on machine m

2. Problem with unlimited intermediate storage

In this section, we consider the problem with unlimited intermediate storage.

2.1. DS1 model

Damodaran and Srihari [2] present the following MILP model (DS1 model) for the unlimited intermediate storage
case:

Minimize Cmax (1)

subject to
∑
b∈B

X jb = 1 ∀ j ∈ J (2)

∑
j∈J

s j X jb ≤ Smin ∀b ∈ B (3)

Pbm ≥ p jm X jb ∀ j ∈ J, b ∈ B, m ∈ M (4)∑
k∈K

Zbk = 1 ∀b ∈ B (5)

∑
b∈B

Zbk = 1 ∀k ∈ K (6)

Qkm ≥ Pbm + M(Zbk − 1) ∀b ∈ B, k ∈ K , m ∈ M (7)

Ck1 =

k∑
k′=1

Qk′1 ∀k ∈ K (8)

C12 = C11 + Q12 (9)

Ck2 ≥ Ck−1,2 + Qk2 ∀k ∈ K/{1} (10)

Ck2 − Ck1 ≥ Qk2 ∀k ∈ K (11)

Cmax ≥ Cn2 (12)

X jb, Zbk = 0 or 1 (13)

Ckm, Qkm, Pbm, Cmax ≥ 0. (14)

Objective (1) minimizes the makespan. Constraint (2) ensures that each job is assigned to exactly one batch.
Constraint (3) requires that the total size of jobs assigned to a batch cannot exceed the capacity of each machine.
Constraint (4) is used to compute the processing time of batch b on machine m. Constraints (5) and (6) ensure that
each batch is assigned to a position and each position has one batch assigned to it. Constraint (7) is used to compute
the processing time of the kth batch on machine m. Constraints (8)–(11) are used to compute the completion times of
the kth batch on the two machines. Constraint (12) determines the makespan. Constraints (13) and (14) impose the
binary and nonnegativity restrictions on the variables.

2.2. Improved DS1 model

The above DS1 model introduces a variable Qkm in order to compute the completion time of each job. To define
Qkm , another set of binary variables Zbk is added. However, a careful examination of the DS1 model reveals that the
variable Qkm is redundant. We can simply use the existing variable Pbm to compute the completion times of jobs. The
MILP model will make a suitable arrangement so that Pbm is placed in the right position. Thus, constraints (5)–(7)
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can be deleted. Accordingly, Qkm and Ckm in constraints (8)–(11) need to be replaced by Pbm and Cbm , respectively.
For completeness, the improved DS1 model is given as follows:

Minimize Cmax (1
′

)

Subject to
∑
b∈B

X jb = 1 ∀ j ∈ J (2
′

)

∑
j∈J

s j X jb ≤ Smin ∀b ∈ B (3
′

)

Pbm ≥ p jm X jb ∀ j ∈ J, b ∈ B, m ∈ M (4
′

)

Cb1 =

b∑
k=1

Pk1 ∀b ∈ B (5
′

)

C12 = C11 + P12 (6
′

)

Cb2 ≥ Cb−1,2 + Pb2 ∀b ∈ B/{1} (10
′

)

Cb2 − Cb1 ≥ Pb2 ∀b ∈ B (11
′

)

Cmax ≥ Cn2 (12
′

)

X jb = 0 or 1 (13
′

)

Cbm, Pbm, Cmax ≥ 0. (14
′

)

It is worth noting that the model with #B = n can be solved by the famous Johnson’s algorithm [5]. Therefore,
we can apply the MILP model with only #B = n − 1 and compare with the solution from Johnson’s algorithm for
#B = n to obtain the optimal solution.

2.3. Lower bounds

Good lower bounds can help the MILP model be solved more efficiently. By considering each machine individually,
we can establish a lower bound L B on the makespan as follows:

Step 1. For each machine m, determine the associated lower bound L Bm by performing Steps 2–4.
Step 2. Group the jobs, in LPT (longest processing time) order, into several batches by setting the total size of each

batch as Sm (except the last batch), where jobs are allowed to be split.
Step 3. Sum up the processing times of the first jobs in each batch.
Step 4. Compute L Bm by adding the smallest processing time on the other machine to the sum in Step 3.
Step 5. The lower bound L B can be determined by combining the two L Bm , i.e.,

L B = max{L B1, L B2}.

The lower bound can be easily justified. We first sequence jobs in non-increasing order of processing times (LPT
order) and then group the jobs, which are allowed to be split, such that each batch has a total size Sm . Next, we sum
up the processing times of the first jobs in each batch. It is clear that any interchanges of jobs in the sequence and/or
grouping the jobs in any other ways cannot decrease the value of the sum. Finally, the smallest processing time on
the other machine is added to account for the computation of makespan. Thus, the steps result in a lower bound on
makespan of the problem.

Example 1. Consider the same numerical example as in Damodaran and Srihari [2]. The processing times and sizes of
jobs are given in Table 1. The machine capacities are assumed to be 10. Applying the above steps yields the following
result (see Fig. 1):

L B = max{L B1, L B2}

= max{15 + 10 + 7 + 3 + 1, 14 + 10 + 5 + 4 + 2}

= max{36, 35} = 36.

The optimal solution of this problem is C∗
max = 45, so the ratio of L B/C∗

max is 0.8.
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Table 1
Data for Example 1

j 1 2 3 4 5 6 7 8 9 10

p j1 10 2 6 15 7 9 3 10 10 6
p j2 14 9 10 1 12 4 5 8 5 9
s j 5 2 3 4 5 3 5 1 4 4

Fig. 1. Lower bound computation for Example 1.

Fig. 2. The V-shape property.

2.4. Proposed heuristic

It is worth noting that in all the test problems the makespan has a V-shape property with respect to #B, as depicted
in Fig. 2. Let C i

max be the makespan for the problem with a given #B = i . Then the V-shape property can be stated as:
if C i+1

max > C i
max, then C i+2

max > C i+1
max. The V-shape property can only be stated as a conjecture since we cannot prove it.

But, on the other hand, we have not found any counter-example until now. Therefore, if only a near-optimal solution
is desired, the solution procedure can be terminated once a local minimum makespan has been found. Based on the
computational experiments given in Section 4, the V-shape property holds for all the test problems.

Let nL S denote the number of large jobs that have a size larger than Smin/2, and nM S denote the number of medium
jobs that have a size equal to Smin/2. Then we can present the heuristic for solving the MILP model in the following
steps:

Step 1. Compute LB and the smallest possible number of batches i = maxm∈M

{⌈∑
j s j/Smin

⌉
, nL S + dnM S/2e

}
.

Set i = i . Apply MILP with given #B = i to compute C i
max. If it is infeasible, set C i

max = ∞. If C i
max = L B, then

the resulting makespan is optimal and stop.
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Table 2
Solution results for Example 2

Solution procedure No. of batches No. of binary variables C i
max CPU time (s)

Heuristic 4 40 45 3
5 50 45 7
6 60 48 42

Total 52
Improved MILP ≤9 90 45 404
Johnson’s algorithm 10 – 79 0

Step 2. Set i = i + 1. Apply MILP with given i to obtain C i
max.

Step 3. If C i
max > C i−1

max, stop; the resulting makespan is C i−1
max. Otherwise, return to Step 2.

We now elaborate the above procedure. In Step 1, we compute LB by the steps as described above. Then, we
determine the smallest possible number of batches i by the stated equation. The first part of the maximum is obvious.
In the second part, the number of batches is at least nL S + dnM S/2e because each batch can contain at most one large
job and at most two medium jobs. In Example 1, i = max{ d36 / 10e , d36 / 10e , d3/2e} = 4. Next, we solve the
MILP model with given #B = i . The MILP with a given number of batches can be solved much easier because the
number of binary variables X jb becomes much smaller. In Example 1, the number of X jb for #B = 4 is only 40,
compared to 100 without a given number of batches. However, the MILP model with given #B = i may be infeasible.
In this case, we set C i

max = ∞. In Steps 2 and 3, we try to find a local minimum makespan with respect to #B and
stop the algorithm once the minimum is found.

Example 2. Applying the heuristic to the set of jobs in Example 1 yields the result shown in Table 2. The V-shape
property does hold here because Cmax = 45, 45, 48, 56, 62, 71, 79 for #B = 4, 5, . . . , 10. As a comparison, we also
solve the MILP model with #B ≤ 9 (and compare with the solution for #B = 10 from Johnson’s algorithm) to obtain
the optimal solution. It is observed that the heuristic requires only about 13% of the CPU time of the optimal MILP
model.

3. Problem with zero intermediate storage

In this section, we consider the problem with zero intermediate storage.

3.1. DS2 model

To formulate the problem as an MILP model, Damodaran and Srihari [2] replace constraints (5)–(11) in DS1 model
by the following constraints:

C11 = P11 = D11 (15)

Cb1 = Db−1,1 + Pb1 ∀b ∈ B/{1} (16)

Cb2 = Db1 + Pb2 ∀b ∈ B (17)

Db1 ≥ Cb−1,2 ∀b ∈ B/{1}. (18)

The above constraints have been improved according to Section 2.2, i.e., the variable Qkm has been replaced by
Pbm . Constraints (16) and (17) are used to compute the completion time of batch b on machine 1. Constraint (18)
ensures that batch b may leave machine 1 only after batch b − 1 has completed its processing on machine 2.

By examining the DS2 model, we note that the following additional constraint is required:

Db1 ≥ Cb1 ∀b ∈ B. (19)

Otherwise, it may occur that Db1 < Cb1, which is invalid for the problem.
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Table 3
Experimental design

Factors Levels

Job processing times p jm ∈ [1, 100]

Capacities of machines Sm = 10, m = 1, 2
Job sizes s j ∈ [amin, amax]

Distribution I [amin, amax] = [1, 5]

Distribution II [amin, amax] = [4, 10]

Distribution III [amin, amax] = [1, 10]

Number of instances per combination 10
Number of jobs (first experiment) n = 5, 6, 7, 8
Number of jobs (second experiment) n = 10, 15

3.2. Improved DS2 model

We can use the same approach as in Section 2.2 to improve the DS2 model. Moreover, the model can be further
improved by replacing the two variables Cbm and Dbm with a single variable Tbm , which denotes the starting time of
batch b on machine m. Accordingly, we replace all the related constraints and objective by the following:

Minimize Tn+1,2 (20)

Subject to T21 = P11 (21)

Tbm ≥ Tb−1,m + Pb−1,m ∀b = 2, . . . , n + 1, m ∈ M (22)

Tb1 = Tb−1,2 ∀b = 2, . . . , n + 1. (23)

Constraints (21) and (22) compute the starting time of batch b on machine m. Constraint (23) ensures that the time
that machine 1 starts with a new batch is exactly the same as the time that machine 2 starts with the batch just released
from machine 1. Here, we use a dummy variable Tn+1,m , which not only denotes the objective Cmax but also specifies
the starting time of the last batch on machine 2. With this improvement, the number of related variables is reduced
from 2 × (#B) to #B, and the number of related constraints is reduced from 4 × (#B) to 3 × (#B).

4. Computational experiments

In this section, we verify the performance of the MILP models and the MILP-based heuristic by using the same
problem generating scheme as Uzsoy [8]. Job processing times were randomly generated from a discrete uniform
distribution U (1, 100). The capacities of both machines were assumed to be 10. Job sizes were generated from
discrete uniform distributions between amin and amax. Three different distributions of job sizes were experimented. In
distribution I, we set (amin, amax) = (1, 5), which represents the case where job sizes are relatively small so that more
jobs can be assigned to a batch. In distribution II, we set (amin, amax) = (4, 10), which represents the situation where
job sizes are relatively large so that few jobs (only one job in many batches) can be batched together. In distribution
III, we set (amin, amax) = (1, 10), which represents the case where job sizes are distributed widely. The experimental
design including the factors and the levels is summarized in Table 3. The MILP models, generated by a computer
program, were solved by LINGO 8.0 and run on a Pentium IV 2.4 GHz (Core 2 Quad) PC.

In the first experiment, we compare the two DS models with their respective improved models. The computational
results for the compared models are summarized in Table 4, which provide the information on the CPU times
(in seconds) of the models with n = 5, 6, 7, 8 where job sizes were generated by distribution I. For each factor
combination, 10 independent instances were generated, resulting in a total of 40 instances. The results indicate that
the improved models are much better than the original ones, which can only solve a maximum of 7 jobs within 12 h
(43 200 s).

In the second experiment, we evaluated the performance of the improved MILP models and the heuristics by
solving the problem with n = 10 and 15. For each factor combination, 10 independent instances were generated,
resulting in a total of 60 instances for each MILP model. The computational results of instances with unlimited and
zero intermediate storage are summarized in Tables 5 and 6, respectively. The tables provide the information on the
smallest possible number of batches (i), optimal number of batches (i∗), CPU times for the improved MILP models
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Table 4
Comparison of DS models and improved DS models

Instances n CPU time (s) CPU time (s)
DS1 Improved DS1 DS2 Improved DS2

1 5 51 0 11 0
2 59 0 9 0
3 68 0 40 0
4 11 0 7 0
5 11 0 8 0
6 43 0 11 0
7 34 0 9 0
8 9 0 6 0
9 68 0 24 0

10 11 0 6 0
11 6 886 0 427 0
12 601 0 296 0
13 111 0 93 0
14 345 0 237 0
15 135 0 113 0
16 272 0 278 0
17 192 0 177 0
18 531 0 178 0
19 509 0 266 0
20 486 0 205 0
21 7 >43 200 1 >43 200 0
22 >43 200 6 >43 200 3
23 >43 200 2 >43 200 1
24 5 291 0 2 513 1
25 14 345 1 10 613 1
26 27 171 1 13 071 0
27 40 712 0 10 713 1
28 29 919 1 10 269 1
29 >43 200 5 >43 200 4
30 8 787 1 7 719 0
31 8 >43 200 7 >43 200 4
32 >43 200 6 >43 200 5
33 >43 200 1 >43 200 2
34 >43 200 2 >43 200 5
35 >43 200 0 >43 200 4
36 >43 200 1 >43 200 1
37 >43 200 4 >43 200 2
38 >43 200 1 >43 200 2
39 >43 200 1 >43 200 2
40 >43 200 3 >43 200 2

with or without the use of lower bound, and CPU times for the heuristic with different specified numbers of batches
(i; i + 1; i + 2). Recall that according to the V-shape property, the heuristic need not compute C i+2

max if C i+1
max > C i

max.
A review of the results presented in both tables shows that i∗ = i for most instances, and i∗ is very close to i
(i∗ = i + 1) for the remaining instances. Also, the use of lower bound in the MILP models, in general, can improve
the computational efficiency. However, due to the large variation of CPU time, it may increase the CPU time for some
instances. From the three columns i , i∗, and (i; i+1; i+2), we can see that the heuristic can obtain the optimal solution
for all the instances for which the optimum can be achieved by MILP. For most instances, the heuristic requires less
CPU time than the optimum approach, especially for larger-size problems. However, for some instances especially
with distribution II, the heuristic takes longer than the optimum approach. This is because job sizes are relatively large
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Table 5
Computational results of instances with unlimited intermediate storage

Inst. n Dist. i i∗ Optimum CPU
time (s)

Heuristic CPU time (s) Inst. n Dist. i i∗ Optimum CPU
time (s)

Heuristic CPU time (s)

Without
LB

With
LB

i; i + 1; i + 2 Total Without
LB

With
LB

i; i + 1; i + 2 Total

1 10 I 4 4 81 167 3; 10 13 31 15 I 4 5 4 479 5 303 12; 47; 1020 1 079

2 3 3 11 11 1;1 2 32 5 5 29 669 32 255 152; 722 874

3 3 3 11 16 0; 1 1 33 5 5 25 636 2 264 85; 233 303

4 3 3 12 11 0; 2 2 34 6 6 21 638 19 471 184; 303 487

5 3 3 7 5 0; 2 2 35 5 >43 200 >43 200 55; 480 535

6 3 3 3 4 0; 2 2 36 5 >43 200 >43 200 22; 631 653

7 4 4 7 10 1; 3 4 37 5 >43 200 >43 200 158; 814; 7302 8 270

8 4 4 43 10 1; 3 4 38 5 >43 200 >43 200 61; 694 755

9 4 4 16 16 1; 2 3 39 5 >43 200 >43 200 18; 339 357

10 3 3 5 8 1; 2 3 40 5 5 >43 200 33 472 98; 375 473

11 II 8 8 549 3 8c 8 41 II 13 >43 200 >43 200 >43 200 >43 200

12 9 9 1371 1013 1007; 0a 1007 42 13 >43 200 >43 200 >43 200 >43 200

13 7 8 1333 1049 0b; 219; 2256 2475 43 12 >43 200 >43 200 >43 200 >43 200

14 8 8 700 1035 155; 852 1007 44 12 >43 200 >43 200 >43 200 >43 200

15 7 8 1298 416 0b; 118; 724 842 45 13 >43 200 >43 200 >43 200 >43 200

16 10 10 – – 0a 0 46 13 >43 200 >43 200 >43 200 >43 200

17 8 8 1027 241 140; 498 638 47 12 >43 200 >43 200 0b; >43 200 >43 200

18 9 9 440 2 1; 0a 1 48 13 13 >43 200 11 21c 21

19 9 9 274 1 1; 0a 1 49 12 >43 200 >43 200 >43 200 >43 200

20 9 9 1463 3 2; 0a 2 50 11 >43 200 >43 200 >43 200 >43 200

21 III 7 7 442 225 13;133 146 51 III 10 >43 200 >43 200 404; >43 200 >43 200

22 5 6 844 373 3; 9; 168 180 52 10 >43 200 >43 200 >43 200 >43 200

23 6 7 249 356 8; 72; 808 888 53 9 >43 200 >43 200 181; 1488 1 669

24 6 7 585 668 0b; 122; 395 517 54 8 >43 200 >43 200 40; 332 372

25 5 5 514 116 3; 7 10 55 9 >43 200 >43 200 39032; >43 200 >43 200

26 7 7 170 1 1c 1 56 10 >43 200 >43 200 66b; >43 200 >43 200

27 8 8 730 1 1c 1 57 9 >43 200 >43 200 171; 1491 1 662

28 7 7 280 1 1c 1 58 9 >43 200 >43 200 307; 18 104 18 411

29 4 4 93 124 1; 7 8 59 9 >43 200 >43 200 19b ; >43 200 8

30 6 6 177 86 10; 62 72 60 7 >43 200 >43 200 355; 1839; 3916 6 110

a Solved by Johnson’s algorithm.
b Infeasible.
c The makespan is equal to the lower bound.

in distribution II so that few jobs can be batched together, or equivalently the optimal number of batches i∗ is close to
n. In such a situation, the heuristic cannot take many advantages of the V-shape property but still has to solve several
MILP models, compared to only a single MILP model for the optimum approach. Based on the above discussion,
we can safely employ the heuristic as the solution approach for the problem unless the smallest possible number of
batches, i , is very close to n. Finally, we note that problem instances with distribution I is the easiest to solve and
instances with distribution II is the hardest. This is consistent with the number of batches in a problem (see i and i∗

columns).
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Table 6
Computational results of instances with zero intermediate storage

Inst. n Dist. i i∗ Optimum CPU
time (s)

Heuristic CPU time (s) Inst. n Dist. i i∗ Optimum CPU time
(s)

Heuristic CPU time (s)

Without
LB

With
LB

i; i + 1; i + 2 Total Without
LB

With
LB

i; i + 1; i + 2 Total

1 10 I 4 4 91 10 2; 6 8 31 15 I 4 4 3 176 1 189 15; 106 121

2 3 3 9 6 1; 1 2 32 5 6 3 485 2 069 124; 148; 1809 2 081

3 3 3 40 6 0; 1 1 33 5 5 17 761 2 155 53; 183 236

4 3 3 10 5 1; 1 2 34 6 6 7 472 6 611 173; 191 364

5 3 3 14 5 0; 1 1 35 5 5 7 239 9 107 47; 247 294

6 3 3 3 5 1; 2 3 36 5 5 6 353 10 483 72; 226 298

7 4 4 9 9 1; 3 4 37 5 >43 200 >43 200 108; 264; 462 834

8 4 4 50 12 1; 5 6 38 5 >43 200 >43 200 21; 532; 6322 6 875

9 4 4 48 15 1; 3 4 39 5 >43 200 >43 200 27; 1171; 6862 7 060

10 3 3 12 4 1; 1 2 40 5 5 >43 200 7 037 30; 192 222

11 II 8 8 234 220 45; 198 243 41 II 13 >43 200 >43 200 >43 200 >43 200

12 9 9 276 202 200; 0a 200 42 13 >43 200 >43 200 >43 200 >43 200

13 7 8 688 390 0b; 194; 560 754 43 12 >43 200 >43 200 >43 200 >43 200

14 8 8 223 238 162; 272 434 44 12 >43 200 >43 200 >43 200 >43 200

15 7 8 207 261 0b; 86; 495 581 45 13 >43 200 >43 200 >43 200 >43 200

16 10 10 – – 0a 0 46 13 >43 200 >43 200 >43 200 >43 200

17 8 8 198 286 47; 348 395 47 12 >43 200 >43 200 0b; >43 200 >43 200

18 9 9 237 24 28; 0a 28 48 13 >43 200 >43 200 >43 200 >43 200

19 9 9 204 116 80; 0a 80 49 12 >43 200 >43 200 >43 200 >43 200

20 9 9 350 397 427; 0a 427 50 11 >43 200 >43 200 0b; >43 200 >43 200

21 III 7 7 220 174 11; 43 54 51 III 10 >43 200 >43 200 289; 4253; >43 200 >43 200

22 5 6 120 110 0b; 12; 96 108 52 10 >43 200 >43 200 >43 200 >43 200

23 6 7 104 135 7; 47; 54 53 9 >43 200 >43 200 150; 11 779 11 929

24 6 7 170 212 0b; 18; 152 170 54 8 >43 200 >43 200 9c 9

25 5 5 310 21 1; 4 5 55 9 >43 200 >43 200 831; 8504 9 335

26 7 7 56 69 25; 63 88 56 10 >43 200 >43 200 50b; >43 200 >43 200

27 8 8 121 130 54; 187 241 57 9 >43 200 >43 200 218; 2580 2 798

28 7 7 140 88 10; 68 78 58 9 >43 200 >43 200 269; 19 859 20 128

29 4 4 54 9 1; 5 6 59 9 >43 200 >43 200 6b; 2454; 16 858 19 318

30 6 6 121 34 8; 23 31 60 7 7 32 125 29 269 12; 160 172

a Solved by Johnson’s algorithm.
b Infeasible.
c The makespan is equal to the lower bound.

5. Conclusions

In this paper we have improved existing MILP models for scheduling jobs in a flowshop with two batch processing
machines such that the makespan is minimized. Computational results have demonstrated that the improved models
are much better than the original ones. In specific, many problem instances that cannot be solved within 12 h by
the original models can now be resolved by the improved models in less than 7 s. Moreover, we have observed
a so-called V-shape property, which is a conjecture since we cannot prove it but, on the other hand, we have not
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found any counter-example. Based on the V-shape property, an MILP-based heuristic is developed for the problem.
Computational experiments have shown that the heuristic can obtain the optimal solutions for all the test problem
instances. Future research may be conducted to further improve the MILP models for the batching machine problem.
As the heuristic is still an integer program, where the computation time grows exponentially with problem size, it is
desired to develop a (pseudo-)polynomial time heuristic in the further research.
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